Ikhaya / Imibuzo Evame Ukubuzwa

Imibuzo Evame Ukubuzwa

sifinyeze izinkinga ezivamile

Production

  • Q.

    Ingabe uyayenza imikhiqizo eyenziwe ngokwezifiso?

    A.

    Yebo. Sihlinzeka amakhasimende ngezixazululo ze-OEM/ODM. Ubuncane be-oda le-OEM yizingcezu eziyi-10,000.

  • Q.

    Uyipakisha kanjani imikhiqizo?

    A.

    Sipakisha ngemithetho yeNhlangano Yezizwe, futhi singahlinzeka ngamaphakheji akhethekile ngokuya ngezidingo zamakhasimende.

  • Q.

    Hlobo luni lwesitifiketi onaso?

    A.

    Sine ISO9001, CB, CE, UL, BIS, UN38.3, KC, PSE.

  • Q.

    Ingabe uhlinzeka ngamasampuli amahhala?

    A.

    Sihlinzeka ngamabhethri anamandla angeqi ku-10WH njengamasampuli amahhala.

  • Q.

    Uyini umthamo wakho wokukhiqiza?

    A.

    Izingcezu eziyi-120,000-150,000 ngosuku, umkhiqizo ngamunye unamandla okukhiqiza ahlukile, ungaxoxa ngemininingwane enemininingwane ngokusho kwe-imeyili.

  • Q.

    Kuthatha isikhathi esingakanani ukukhiqiza?

    A.

    Cishe izinsuku ezingama-35. Isikhathi esithile singahlanganiswa nge-imeyili.

  • Q.

    Singakanani isikhathi sakho sokukhiqiza isampula?

    A.

    Amasonto amabili (izinsuku eziyi-14).

Izincwajana zemininingwane

  • Q.

    Yimiphi imigomo yokukhokha?

    A.

    Ngokuvamile samukela u-30% wenkokhelo yangaphambi kwesikhathi njengediphozithi kanye no-70% ngaphambi kokulethwa njengenkokhelo yokugcina. Ezinye izindlela kungaxoxiswana ngazo.

  • Q.

    Iyini imigomo yokulethwa?

    A.

    Sinikeza: FOB kanye CIF.

  • Q.

    Ithini indlela yokukhokha?

    A.

    Samukela inkokhelo nge-TT.

  • Q.

    Yiziphi izimakethe othengise kuzo?

    A.

    Sithuthele izimpahla eNyakatho Yurophu, eNtshonalanga Yurophu, eNyakatho Melika, eMpumalanga Ephakathi, e-Asia, e-Afrika, nakwezinye izindawo.

Ubuchwepheshe

  • Q.

    Liyini ibhethri?

    A.

    Batteries are a kind of energy conversion and storage devices that convert chemical or physical energy into electrical energy through reactions. According to the different energy conversion of the battery, the battery can be divided into a chemical battery and a biological battery. A chemical battery or chemical power source is a device that converts chemical energy into electrical energy. It comprises two electrochemically active electrodes with different components, respectively, composed of positive and negative electrodes. A chemical substance that can provide media conduction is used as an electrolyte. When connected to an external carrier, it delivers electrical energy by converting its internal chemical energy. A physical battery is a device that converts physical energy into electrical energy.

  • Q.

    What are the differences between primary batteries and secondary batteries?

    A.

    Umehluko omkhulu wukuthi impahla esebenzayo ihlukile. Izinto ezisebenzayo zebhethri lesibili ziyabuyiseleka emuva, kuyilapho okokusebenza kwebhethri eliyinhloko kungasebenzi. Ukuzikhipha ngokwakho kwebhethri lokuqala kuncane kakhulu kunebhethri lesibili. Noma kunjalo, ukumelana kwangaphakathi kukhulu kakhulu kunokwebhethri lesibili, ngakho umthamo womthwalo uphansi. Ukwengeza, umthamo othize othize kanye nomthamo othize wevolumu webhethri eliyinhloko kubaluleke kakhulu kunalawo amabhethri atholakalayo aphinde ashajwe.

  • Q.

    What is the electrochemical principle of Ni-MH batteries?

    A.

    Ni-MH batteries use Ni oxide as the positive electrode, hydrogen storage metal as the negative electrode, and lye (mainly KOH) as the electrolyte. When the nickel-hydrogen battery is charged: Positive electrode reaction: Ni(OH)2 + OH- → NiOOH + H2O–e- Adverse electrode reaction: M+H2O +e-→ MH+ OH- When the Ni-MH battery is discharged: Positive electrode reaction: NiOOH + H2O + e- → Ni(OH)2 + OH- Negative electrode reaction: MH+ OH- →M+H2O +e-

  • Q.

    What is the electrochemical principle of lithium-ion batteries?

    A.

    The main component of the positive electrode of the lithium-ion battery is LiCoO2, and the negative electrode is mainly C. When charging, Positive electrode reaction: LiCoO2 → Li1-xCoO2 + xLi+ + xe- Negative reaction: C + xLi+ + xe- → CLix Total battery reaction: LiCoO2 + C → Li1-xCoO2 + CLix The reverse reaction of the above reaction occurs during discharge.

  • Q.

    What are the commonly used standards for batteries?

    A.

    Commonly used IEC standards for batteries: The standard for nickel-metal hydride batteries is IEC61951-2: 2003; the lithium-ion battery industry generally follows UL or national standards. Commonly used national standards for batteries: The standards for nickel-metal hydride batteries are GB/T15100_1994, GB/T18288_2000; the standards for lithium batteries are GB/T10077_1998, YD/T998_1999, and GB/T18287_2000. In addition, the commonly used standards for batteries also include the Japanese Industrial Standard JIS C on batteries. IEC, the International Electrical Commission (International Electrical Commission), is a worldwide standardization organization composed of electrical committees of various countries. Its purpose is to promote the standardization of the world's electrical and electronic fields. IEC standards are standards formulated by the International Electrotechnical Commission.

  • Q.

    What is the main structure of the Ni-MH battery?

    A.

    Izingxenye eziyinhloko zamabhethri e-nickel-metal hydride yi-positive electrode sheet (nickel oxide), ishidi le-electrode elingalungile (i-hydrogen storage alloy), i-electrolyte (ikakhulukazi i-KOH), iphepha le-diaphragm, indandatho yokuvala, i-cap ye-electrode eqondile, ikesi yebhethri, njll.

  • Q.

    What are the main structural components of lithium-ion batteries?

    A.

    Izingxenye eziyinhloko zamabhethri e-lithium-ion yizimbozo zebhethri ezingaphezulu neziphansi, ishidi le-electrode esebenzayo (into esebenzayo i-lithium cobalt oxide), isihlukanisi (ulwelwesi olukhethekile oluyinhlanganisela), i-electrode engeyinhle (impahla esebenzayo ikhabhoni), i-organic electrolyte, ikesi yebhethri. (ihlukaniswe yaba izinhlobo ezimbili zegobolondo lensimbi negobolondo le-aluminium) njalonjalo.

  • Q.

    What is the internal resistance of the battery?

    A.

    Isho ukumelana okutholwa amandla amanje ageleza ebhethrini lapho ibhethri isebenza. Yakhiwa ukumelana kwangaphakathi kwe-ohmic kanye nokumelana kwangaphakathi kwe-polarization. Ukumelana okubalulekile kwangaphakathi kwebhethri kuzonciphisa i-voltage yokusebenza yokukhishwa kwebhethri futhi kunciphise isikhathi sokuphuma. Ukumelana kwangaphakathi kuthintwa ikakhulukazi impahla yebhethri, inqubo yokukhiqiza, ukwakheka kwebhethri, nezinye izici. Ipharamitha ebalulekile ukukala ukusebenza kwebhethri. Qaphela: Ngokuvamile, ukumelana kwangaphakathi esimweni sokushajwa kuyindinganiso. Ukuze ubale ukumelana kwangaphakathi kwebhethri, kufanele isebenzise imitha yokumelana ekhethekile yangaphakathi esikhundleni se-multimeter ebangeni le-ohm.

  • Q.

    What is the nominal voltage?

    A.

    Amandla kagesi ebhethri abhekisela kugesi oboniswa ngesikhathi sokusebenza okuvamile. Amandla kagesi ebhethri lesibili le-nickel-cadmium nickel-hydrogen ngu-1.2V; i-voltage yegama lebhethri le-lithium yesibili ingu-3.6V.

  • Q.

    What is open circuit voltage?

    A.

    I-voltage yesekhethi evulekile ibhekisela kumehluko ongaba khona phakathi kwama-electrode avumayo kanye nama-negative ebhethri lapho ibhethri ingasebenzi, okungukuthi, lapho ingekho yamanje egeleza kusekethe. I-voltage esebenzayo, eyaziwa nangokuthi i-terminal voltage, ibhekisela kumehluko ongaba khona phakathi kwezigxobo eziphozithivu nezinegethivu zebhethri lapho ibhethri isebenza, okungukuthi, uma kukhona i-overcurrent kusekethe.

  • Q.

    Ungakanani umthamo webhethri?

    A.

    Amandla ebhethri ahlukaniswe amandla alinganiselwe kanye nekhono langempela. Umthamo olinganiselwe webhethri ubhekisela esimisweni noma iziqinisekiso ukuthi ibhethri kufanele ikhiphe inani elincane likagesi ngaphansi kwezimo ezithile zokuwukhipha phakathi nomklamo nokukhiqizwa kwesiphepho. Izinga le-IEC libeka ukuthi amabhethri e-nickel-cadmium kanye ne-nickel-metal hydride ashajwa ku-0.1C amahora angu-16 futhi akhishwe ku-0.2C kuya ku-1.0V ezingeni lokushisa elingu-20°C±5°C. Umthamo olinganiselwe webhethri uvezwa njenge-C5. Amabhethri e-lithium-ion kuthiwa azoshajwa amahora angu-3 ngaphansi kwezinga lokushisa elijwayelekile, izimo ezifunwa amandla kagesi ongashintshi (1C) -hlala njalo (4.2V), abese ephuma ku-0.2C kuya ku-2.75V lapho ugesi okhishiwe ulinganisiwe umthamo. Umthamo wangempela webhethri ubhekisela emandleni angempela akhishwe yisiphepho ngaphansi kwezimo ezithile zokukhishwa, okuthinteka kakhulu izinga lokuphuma kanye nezinga lokushisa (ngakho-ke, uma sikhuluma ngokuqinile, umthamo webhethri kufanele ucacise izimo zokushaja nokukhipha). Iyunithi yomthamo webhethri ngu-Ah, mAh (1Ah=1000mAh).

  • Q.

    What is the residual discharge capacity of the battery?

    A.

    Uma ibhethri elishajekayo lishajwa ngamandla amakhulu (njengo-1C noma ngaphezulu), ngenxa "yomphumela webhodlela" okhona esilinganisweni sokusabalalisa sangaphakathi se-overcurrent yamanje, ibhethri selifinyelele ku-voltage yetheminali lapho umthamo ungakashajwa ngokugcwele. , bese isebenzisa i-current encane efana ne-0.2C ingaqhubeka nokususa, kuze kube ngu-1.0V/piece (nickel-cadmium nebhethri ye-nickel-hydrogen) kanye ne-3.0V/piece (ibhethri ye-lithium), umthamo okhululiwe ubizwa ngokuthi umthamo osele.

  • Q.

    What is a discharge platform?

    A.

    Inkundla yokukhipha amabhethri e-Ni-MH aphinde ashajwe ngokuvamile ibhekisela ebangeni lamandla kagesi lapho i-voltage yokusebenza yebhethri izinzile uma ikhishwa ngaphansi kwesistimu ethile yokukhipha. Inani layo lihlobene nokukhishwa kwamandla. Umsinga omkhulu, isisindo esiphansi. Ipulatifomu yokukhipha amabhethri e-lithium-ion ngokuvamile ukuyeka ukushaja lapho i-voltage ingu-4.2V, futhi okwamanje ingaphansi kuka-0.01C ku-voltage engaguquki, bese iyishiya imizuzu eyi-10, futhi ikhiphe ku-3.6V nganoma yisiphi isilinganiso sokuphuma. okwamanje. Kuyindinganiso edingekayo yokukala ikhwalithi yamabhethri.

  • Q.

    What is the marking method for rechargeable batteries specified by IEC?

    A.

    According to the IEC standard, the mark of Ni-MH battery consists of 5 parts. 01) Battery type: HF and HR indicate nickel-metal hydride batteries 02) Battery size information: including the diameter and height of the round battery, the height, width, and thickness of the square battery, and the values are separated by a slash, unit: mm 03) Discharge characteristic symbol: L means that the suitable discharge current rate is within 0.5C M indicates that the suitable discharge current rate is within 0.5-3.5C H indicates that the suitable discharge current rate is within 3.5-7.0C X indicates that the battery can work at a high rate discharge current of 7C-15C. 04) High-temperature battery symbol: represented by T 05) Battery connection piece: CF represents no connection piece, HH represents the connection piece for battery pull-type series connection, and HB represents the connection piece for side-by-side series connection of battery belts. Isibonelo, i-HF18/07/49 imele ibhethri le-nickel-metal hydride eyisikwele enobubanzi obungu-18mm, 7mm, nobude obungu-49mm. I-KRMT33/62HH imele ibhethri le-nickel-cadmium; izinga lokukhipha liphakathi kuka-0.5C-3.5, uchungechunge olushisa kakhulu lokushisa olulodwa ibhethri (ngaphandle kocezu lokuxhuma), ububanzi 33mm, ukuphakama 62mm. According to the IEC61960 standard, the identification of the secondary lithium battery is as follows: 01) The battery logo composition: 3 letters, followed by five numbers (cylindrical) or 6 (square) numbers. 02) The first letter: indicates the harmful electrode material of the battery. I—represents lithium-ion with built-in battery; L—represents lithium metal electrode or lithium alloy electrode. 03) The second letter: indicates the cathode material of the battery. C—cobalt-based electrode; N—nickel-based electrode; M—manganese-based electrode; V—vanadium-based electrode. 04) The third letter: indicates the shape of the battery. R-represents cylindrical battery; L-represents square battery. 05) Numbers: Cylindrical battery: 5 numbers respectively indicate the diameter and height of the storm. The unit of diameter is a millimeter, and the size is a tenth of a millimeter. When any diameter or height is greater than or equal to 100mm, it should add a diagonal line between the two sizes. Square battery: 6 numbers indicate the thickness, width, and height of the storm in millimeters. When any of the three dimensions is greater than or equal to 100mm, it should add a slash between the dimensions; if any of the three dimensions is less than 1mm, the letter "t" is added in front of this dimension, and the unit of this dimension is one-tenth of a millimeter. Isibonelo, i-ICR18650 imele ibhethri ye-lithium-ion yesibili eyicylindrical; impahla ye-cathode yi-cobalt, ububanzi bayo bungaba ngu-18mm, futhi ukuphakama kwayo kungama-65mm. I-ICR20/1050. I-ICP083448 imele ibhethri le-lithium-ion lesibili lesikwele; impahla ye-cathode yi-cobalt, ukujiya kwayo kumayelana no-8mm, ububanzi buyi-34mm, nobude bungaba ngu-48mm. I-ICP08/34/150 imele ibhethri le-lithium-ion lesibili lesikwele; impahla ye-cathode yi-cobalt, ukujiya kwayo kungama-8mm, ububanzi buyi-34mm, nobude bungaba ngu-150mm.

  • Q.

    What are the packaging materials of the battery?

    A.

    01) Non-dry meson (paper) such as fiber paper, double-sided tape 02) PVC film, trademark tube 03) Connecting sheet: stainless steel sheet, pure nickel sheet, nickel-plated steel sheet 04) Lead-out piece: stainless steel piece (easy to solder) Pure nickel sheet (spot-welded firmly) 05) Plugs 06) Protection components such as temperature control switches, overcurrent protectors, current limiting resistors 07) Carton, paper box 08) Plastic shell

  • Q.

    What is the purpose of battery packaging, assembly, and design?

    A.

    01) Beautiful, brand 02) The battery voltage is limited. To obtain a higher voltage, it must connect multiple batteries in series. 03) Protect the battery, prevent short circuits, and prolong battery life 04) Size limitation 05) Easy to transport 06) Design of special functions, such as waterproof, unique appearance design, etc.

  • Q.

    What are the main aspects of the performance of the secondary battery in general?

    A.

    Ngokuyinhloko ihlanganisa i-voltage, ukumelana kwangaphakathi, umthamo, ukuminyana kwamandla, ingcindezi yangaphakathi, izinga lokuzikhipha, impilo yomjikelezo, ukusebenza kokuvala, ukusebenza kokuphepha, ukusebenza kwesitoreji, ukubukeka, njll. Kukhona nokukhokhiswa ngokweqile, ukukhipha ngokweqile, nokumelana nokugqwala.

  • Q.

    What are the reliability test items of the battery?

    A.

    01) Cycle life 02) Different rate discharge characteristics 03) Discharge characteristics at different temperatures 04) Charging characteristics 05) Self-discharge characteristics 06) Storage characteristics 07) Over-discharge characteristics 08) Internal resistance characteristics at different temperatures 09) Temperature cycle test 10) Drop test 11) Vibration test 12) Capacity test 13) Internal resistance test 14) GMS test 15) High and low-temperature impact test 16) Mechanical shock test 17) High temperature and high humidity test

  • Q.

    Yiziphi izinto zokuhlola ukuphepha kwebhethri?

    A.

    01) Short circuit test 02) Overcharge and over-discharge test 03) Withstand voltage test 04) Impact test 05) Vibration test 06) Heating test 07) Fire test 09) Variable temperature cycle test 10) Trickle charge test 11) Free drop test 12) low air pressure test 13) Forced discharge test 15) Electric heating plate test 17) Thermal shock test 19) Acupuncture test 20) Squeeze test 21) Heavy object impact test

  • Q.

    What are the standard charging methods?

    A.

    Charging method of Ni-MH battery: 01) Constant current charging: the charging current is a specific value in the whole charging process; this method is the most common; 02) Constant voltage charging: During the charging process, both ends of the charging power supply maintain a constant value, and the current in the circuit gradually decreases as the battery voltage increases; 03) Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero. Lithium battery charging method: Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero.

  • Q.

    What is the standard charge and discharge of Ni-MH batteries?

    A.

    Izinga lamazwe ngamazwe le-IEC libeka ukuthi izinga lokushajwa nokushajwa kwamabhethri e-nickel-metal hydride: qala ngokukhipha ibhethri ku-0.2C kuya ku-1.0V/ucezu, bese ushaja ku-0.1C amahora angu-16, ulishiye ihora elingu-1, bese ulibeka. ku-0.2C ukuya ku-1.0V/piece, okungukuthi Ukushaja nokukhipha izinga lebhethri.

  • Q.

    What is pulse charging? What is the impact on battery performance?

    A.

    Ukushaja kwe-Pulse ngokuvamile kusebenzisa ukushaja nokukhipha, ukusetha imizuzwana emi-5 bese kudedelwa isekhondi elingu-1. Izonciphisa iningi le-oksijini ekhiqizwa phakathi nenqubo yokushaja kuma-electrolyte ngaphansi kwe-pulse yokukhipha. Akugcini nje kuphela ukuthi kukhawulele inani le-electrolyte vaporization yangaphakathi, kodwa lawo mabhethri amadala ahlukanisiwe kakhulu azolulama kancane kancane noma asondele kumthamo wangempela ngemva kwezikhathi ezingu-5-10 zokushaja nokukhipha kusetshenziswa le ndlela yokushaja.

  • Q.

    What is trickle charging?

    A.

    Ukushaja i-Trickle kusetshenziselwa ukuvala isikhala sokulahlekelwa umthamo okubangelwa ukuzikhipha ngokwayo ibhethri ngemva kokuba selishajwe ngokugcwele. Ngokuvamile, ukushaja kwe-pulse current kusetshenziselwa ukufeza inhloso engenhla.

  • Q.

    What is charging efficiency?

    A.

    Ukusebenza kahle kokushaja kubhekisela esilinganisweni sezinga amandla kagesi asetshenziswa ibhethri ngesikhathi sokushaja aguqulwa abe amandla ekhemikhali ibhethri elingawagcina. Ithintwa kakhulu ubuchwepheshe bebhethri kanye nezinga lokushisa lendawo yokusebenza yesiphepho—ngokuvamile, ukuphakama kwezinga lokushisa elizungezile, kwehlisa ukusebenza kahle kokushaja.

  • Q.

    What is discharge efficiency?

    A.

    Ukusebenza kahle kokukhipha kubhekisela kumandla wangempela akhishelwe ku-voltage yetheminali ngaphansi kwezimo ezithile zokukhipha kumthamo olinganisiwe. Ithintwa kakhulu izinga lokukhishwa, izinga lokushisa elizungezile, ukumelana kwangaphakathi, nezinye izici. Ngokuvamile, izinga lokukhishwa liphezulu, izinga lokuphuma liphezulu. Ukwehla kokusebenza kahle kokukhipha. Ukwehla kwezinga lokushisa, kunciphisa ukusebenza kahle kokukhipha.

  • Q.

    What is the output power of the battery?

    A.

    The output power of a battery refers to the ability to output energy per unit time. It is calculated based on the discharge current I and the discharge voltage, P=U*I, the unit is watts. The lower the internal resistance of the battery, the higher the output power. The internal resistance of the battery should be less than the internal resistance of the electrical appliance. Otherwise, the battery itself consumes more power than the electrical appliance, which is uneconomical and may damage the battery.

  • Q.

    What is the self-discharge of the secondary battery? What is the self-discharge rate of different types of batteries?

    A.

    Self-discharge is also called charge retention capability, which refers to the retention capability of the battery's stored power under certain environmental conditions in an open circuit state. Generally speaking, self-discharge is mainly affected by manufacturing processes, materials, and storage conditions. Self-discharge is one of the main parameters to measure battery performance. Generally speaking, the lower the storage temperature of the battery, the lower the self-discharge rate, but it should also note that the temperature is too low or too high, which may damage the battery and become unusable. After the battery is fully charged and left open for some time, a certain degree of self-discharge is average. The IEC standard stipulates that after fully charged, Ni-MH batteries should be left open for 28 days at a temperature of 20℃±5℃ and humidity of (65±20)%, and the 0.2C discharge capacity will reach 60% of the initial total.

  • Q.

    What is a 24-hour self-discharge test?

    A.

    The self-discharge test of lithium battery is: Generally, 24-hour self-discharge is used to test its charge retention capacity quickly. The battery is discharged at 0.2C to 3.0V, constant current. Constant voltage is charged to 4.2V, cut-off current: 10mA, after 15 minutes of storage, discharge at 1C to 3.0 V test its discharge capacity C1, then set the battery with constant current and constant voltage 1C to 4.2V, cut-off current: 10mA, and measure 1C capacity C2 after being left for 24 hours. C2/C1*100% should be more significant than 99%.

  • Q.

    What is the difference between the internal resistance of the charged state and the internal resistance of the discharged state?

    A.

    The internal resistance in the charged state refers to the internal resistance when the battery is 100% fully charged; the internal resistance in the discharged state refers to the internal resistance after the battery is fully discharged. Generally speaking, the internal resistance in the discharged state is not stable and is too large. The internal resistance in the charged state is more minor, and the resistance value is relatively stable. During the battery's use, only the charged state's internal resistance is of practical significance. In the later period of the battery's help, due to the exhaustion of the electrolyte and the reduction of the activity of internal chemical substances, the battery's internal resistance will increase to varying degrees.

  • Q.

    What is static resistance? What is dynamic resistance?

    A.

    Ukumelana kwangaphakathi okumile ukumelana kwangaphakathi kwebhethri ngesikhathi sokushajwa, futhi ukumelana okunamandla kwangaphakathi wukumelana nebhethri kwangaphakathi ngesikhathi sokushaja.

  • Q.

    Is the standard overcharge resistance test?

    A.

    The IEC stipulates that the standard overcharge test for nickel-metal hydride batteries is: Discharge the battery at 0.2C to 1.0V/piece, and charge it continuously at 0.1C for 48 hours. The battery should have no deformation or leakage. After overcharge, the discharge time from 0.2C to 1.0V should be more than 5 hours.

  • Q.

    What is the IEC standard cycle life test?

    A.

    IEC stipulates that the standard cycle life test of nickel-metal hydride batteries is: After the battery is placed at 0.2C to 1.0V/pc 01) Charge at 0.1C for 16 hours, then discharge at 0.2C for 2 hours and 30 minutes (one cycle) 02) Charge at 0.25C for 3 hours and 10 minutes, and discharge at 0.25C for 2 hours and 20 minutes (2-48 cycles) 03) Charge at 0.25C for 3 hours and 10 minutes, and release to 1.0V at 0.25C (49th cycle) 04) Charge at 0.1C for 16 hours, put it aside for 1 hour, discharge at 0.2C to 1.0V (50th cycle). For nickel-metal hydride batteries, after repeating 400 cycles of 1-4, the 0.2C discharge time should be more significant than 3 hours; for nickel-cadmium batteries, repeating a total of 500 cycles of 1-4, the 0.2C discharge time should be more critical than 3 hours.

  • Q.

    What is the internal pressure of the battery?

    A.

    Refers to the internal air pressure of the battery, which is caused by the gas generated during the charging and discharging of the sealed battery and is mainly affected by battery materials, manufacturing processes, and battery structure. The main reason for this is that the gas generated by the decomposition of moisture and organic solution inside the battery accumulates. Generally, the internal pressure of the battery is maintained at an average level. In the case of overcharge or over-discharge, the internal pressure of the battery may increase: For example, overcharge, positive electrode: 4OH--4e → 2H2O + O2↑; ① The generated oxygen reacts with the hydrogen precipitated on the negative electrode to produce water 2H2 + O2 → 2H2O ② If the speed of reaction ② is lower than that of reaction ①, the oxygen generated will not be consumed in time, which will cause the internal pressure of the battery to rise.

  • Q.

    What is the standard charge retention test?

    A.

    IEC stipulates that the standard charge retention test for nickel-metal hydride batteries is: After putting the battery at 0.2C to 1.0V, charge it at 0.1C for 16 hours, store it at 20℃±5℃ and humidity of 65%±20%, keep it for 28 days, then discharge it to 1.0V at 0.2C, and Ni-MH batteries should be more than 3 hours. The national standard stipulates that the standard charge retention test for lithium batteries is: (IEC has no relevant standards) the battery is placed at 0.2C to 3.0/piece, and then charged to 4.2V at a constant current and voltage of 1C, with a cut-off wind of 10mA and a temperature of 20 After storing for 28 days at ℃±5℃, discharge it to 2.75V at 0.2C and calculate the discharge capacity. Compared with the battery's nominal capacity, it should be no less than 85% of the initial total.

  • Q.

    What is a short circuit test?

    A.

    Sebenzisa intambo enokumelana kwangaphakathi ≤100mΩ ukuze uxhume izigxobo zebhethri ezigcwele amandla nezinegethivu ebhokisini elivikela ukuqhuma ukuze ufinyeze izigxobo eziphozithivu nezinegethivu. Ibhethri akufanele liqhume noma libambe umlilo.

  • Q.

    What are the high temperature and high humidity tests?

    A.

    The high temperature and humidity test of Ni-MH battery are: After the battery is fully charged, store it under constant temperature and humidity conditions for several days, and observe no leakage during storage. The high temperature and high humidity test of lithium battery is: (national standard) Charge the battery with 1C constant current and constant voltage to 4.2V, cut-off current of 10mA, and then put it in a continuous temperature and humidity box at (40±2)℃ and relative humidity of 90%-95% for 48h, then take out the battery in (20 Leave it at ±5)℃ for two h. Observe that the appearance of the battery should be standard. Then discharge to 2.75V at a constant current of 1C, and then perform 1C charging and 1C discharge cycles at (20±5)℃ until the discharge capacity Not less than 85% of the initial total, but the number of cycles is not more than three times.

  • Q.

    What is a temperature rise experiment?

    A.

    After the battery is fully charged, put it into the oven and heat up from room temperature at a rate of 5°C/min.After the battery is fully charged, put it into the oven and heat up from room temperature at a rate of 5°C/min. When the oven temperature reaches 130°C, keep it for 30 minutes. The battery should not explode or catch fire. When the oven temperature reaches 130°C, keep it for 30 minutes. The battery should not explode or catch fire.

  • Q.

    What is a temperature cycling experiment?

    A.

    The temperature cycle experiment contains 27 cycles, and each process consists of the following steps: 01) The battery is changed from average temperature to 66±3℃, placed for 1 hour under the condition of 15±5%, 02) Switch to a temperature of 33±3°C and humidity of 90±5°C for 1 hour, 03) The condition is changed to -40±3℃ and placed for 1 hour 04) Put the battery at 25℃ for 0.5 hours These four steps complete a cycle. After 27 cycles of experiments, the battery should have no leakage, alkali climbing, rust, or other abnormal conditions.

  • Q.

    What is a drop test?

    A.

    Ngemuva kokuthi ibhethri noma iphakethe lebhethri selishajwe ngokugcwele, liyayehliswa lisuka endaweni eyi-1m liye endaweni ekhonkolo (noma usimende) izikhathi ezintathu ukuze lithole ukushaqeka ezindaweni ezingahleliwe.

  • Q.

    What is a vibration experiment?

    A.

    The vibration test method of Ni-MH battery is: After discharging the battery to 1.0V at 0.2C, charge it at 0.1C for 16 hours, and then vibrate under the following conditions after being left for 24 hours: Amplitude: 0.8mm Make the battery vibrate between 10HZ-55HZ, increasing or decreasing at a vibration rate of 1HZ every minute. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ. (Vibration time is 90min) The lithium battery vibration test method is: After the battery is discharged to 3.0V at 0.2C, it is charged to 4.2V with constant current and constant voltage at 1C, and the cut-off current is 10mA. After being left for 24 hours, it will vibrate under the following conditions: The vibration experiment is carried out with the vibration frequency from 10 Hz to 60 Hz to 10 Hz in 5 minutes, and the amplitude is 0.06 inches. The battery vibrates in three-axis directions, and each axis shakes for half an hour. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ.

  • Q.

    What is an impact test?

    A.

    Ngemva kokuba ibhethri selishajwe ngokugcwele, beka induku eqinile ivundlile bese uphonsa into engamaphawundi angu-20 ukusuka ekuphakameni okuthile ku-hard rod. Ibhethri akufanele liqhume noma libambe umlilo.

  • Q.

    What is a penetration experiment?

    A.

    Ngemva kokuba ibhethri selishajwe ngokugcwele, dlulisa isipikili sobubanzi obuthile phakathi nendawo yesiphepho bese ushiya iphinikhodi ebhethrini. Ibhethri akufanele liqhume noma libambe umlilo.

  • Q.

    What is a fire experiment?

    A.

    Beka ibhethri eligcwaliswe ngokuphelele kudivayisi yokushisisa enekhava eyingqayizivele evikela umlilo, futhi akukho mfucumfucu ezodlula ikhava eyisivikelo.

  • Q.

    What certifications have the company's products passed?

    A.

    Iphasise ISO9001:2000 isitifiketi sohlelo lwekhwalithi kanye nesitifiketi se-ISO14001:2004 sohlelo lokuvikela imvelo; umkhiqizo uthole isitifiketi se-EU CE kanye nesitifiketi se-UL yaseNyakatho Melika, waphumelela ukuhlolwa kokuvikelwa kwemvelo kwe-SGS, futhi uthole ilayisensi yobunikazi be-Ovonic; ngesikhathi esifanayo, i-PICC igunyaze imikhiqizo yenkampani ku-World Scope underwriting.

  • Q.

    What is a Ready-To-Use battery?

    A.

    Ibhethri Elilungele ukusetshenziswa wuhlobo olusha lwebhethri le-Ni-MH elinenani lokugcina lokushajwa eliqaliswe inkampani. Ibhethri elimelana nesitoreji nokusebenza okumbaxambili kwebhethri lokuqala nelesibili futhi lingamiselela ibhethri eliyinhloko. Okusho ukuthi, ibhethri ingaphinda igaywe futhi ibe namandla asele aphezulu ngemuva kokugcinwa ngesikhathi esifanayo namabhethri e-Ni-MH ajwayelekile esibili.

  • Q.

    Kungani i-Ready-To-Use (HFR) ingumkhiqizo ofanele ongashintsha amabhethri alahlwayo?

    A.

    Compared with similar products, this product has the following remarkable features: 01) Smaller self-discharge; 02) Longer storage time; 03) Over-discharge resistance; 04) Long cycle life; 05) Especially when the battery voltage is lower than 1.0V, it has a good capacity recovery function; More importantly, this type of battery has a charge retention rate of up to 75% when stored in an environment of 25°C for one year, so this battery is the ideal product to replace disposable batteries.

  • Q.

    What are the precautions when using the battery?

    A.

    01) Please read the battery manual carefully before use; 02) The electrical and battery contacts should be clean, wiped clean with a damp cloth if necessary, and installed according to the polarity mark after drying; 03) Do not mix old and new batteries, and different types of batteries of the same model can not be combined so as not to reduce the efficiency of use; 04) The disposable battery cannot be regenerated by heating or charging; 05) Do not short-circuit the battery; 06) Do not disassemble and heat the battery or throw the battery into the water; 07) When electrical appliances are not in use for a long time, it should remove the battery, and it should turn the switch off after use; 08) Do not discard waste batteries randomly, and separate them from other garbage as much as possible to avoid polluting the environment; 09) When there is no adult supervision, do not allow children to replace the battery. Small batteries should be placed out of the reach of children; 10) it should store the battery in a cool, dry place without direct sunlight.

  • Q.

    What is the difference between various standard rechargeable batteries?

    A.

    At present, nickel-cadmium, nickel-metal hydride, and lithium-ion rechargeable batteries are widely used in various portable electrical equipment (such as notebook computers, cameras, and mobile phones). Each rechargeable battery has its unique chemical properties. The main difference between nickel-cadmium and nickel-metal hydride batteries is that the energy density of nickel-metal hydride batteries is relatively high. Compared with batteries of the same type, the capacity of Ni-MH batteries is twice that of Ni-Cd batteries. This means that the use of nickel-metal hydride batteries can significantly extend the working time of the equipment when no additional weight is added to the electrical equipment. Another advantage of nickel-metal hydride batteries is that they significantly reduce the "memory effect" problem in cadmium batteries to use nickel-metal hydride batteries more conveniently. Ni-MH batteries are more environmentally friendly than Ni-Cd batteries because there are no toxic heavy metal elements inside. Li-ion has also quickly become a common power source for portable devices. Li-ion can provide the same energy as Ni-MH batteries but can reduce weight by about 35%, suitable for electrical equipment such as cameras and laptops. It is crucial. Li-ion has no "memory effect," The advantages of no toxic substances are also essential factors that make it a common power source. It will significantly reduce the discharge efficiency of Ni-MH batteries at low temperatures. Generally, the charging efficiency will increase with the increase of temperature. However, when the temperature rises above 45°C, the performance of rechargeable battery materials at high temperatures will degrade, and it will significantly shorten the battery's cycle life.

  • Q.

    What is the rate of discharge of the battery? What is the hourly rate of release of the storm?

    A.

    Ukukhishwa kwesilinganiso kubhekisela ebudlelwaneni besilinganiso phakathi kwamandla okukhipha (A) kanye nomthamo olinganiselwe (A•h) ngesikhathi sokusha. Ukukhishwa kwesilinganiso sehora kubhekisela emahoreni adingekayo ukuze ukhiphe umthamo olinganiselwe ngokukhiphayo kwamanje okuthile.

  • Q.

    Why is it necessary to keep the battery warm when shooting in winter?

    A.

    Since the battery in a digital camera has a low temperature, the active material activity is significantly reduced, which may not provide the camera's standard operating current, so outdoor shooting in areas with low temperature, especially. Pay attention to the warmth of the camera or battery.

  • Q.

    What is the operating temperature range of lithium-ion batteries?

    A.

    Ukushaja -10—45℃ Ukukhipha -30—55℃

  • Q.

    Can batteries of different capacities be combined?

    A.

    Uma uhlanganisa amabhethri amasha namadala ngamakhono ahlukene noma uwasebenzisa ndawonye, ​​kungase kube khona ukuvuza, i-voltage enguziro, njll. Lokhu kungenxa yomehluko wamandla phakathi nenqubo yokushaja, okubangela ukuthi amanye amabhethri ashajwe ngokweqile ngesikhathi sokushajwa. Amanye amabhethri awashajwe ngokugcwele futhi anomthamo ngesikhathi sokushajwa. Ibhethri eliphezulu alikashajwa ngokugcwele, futhi nebhethri elisezingeni eliphansi lichithwa ngokweqile. Emjikelezweni ononya onjalo, ibhethri liyalimala, futhi liyavuza noma linevoltage ephansi (eziro).

  • Q.

    What is an external short circuit, and what impact does it have on battery performance?

    A.

    Ukuxhuma amaphethelo amabili angaphandle ebhethri kunoma iyiphi i-conductor kuzodala i-short circuit yangaphandle. Isifundo esifushane singaletha imiphumela enzima ezinhlotsheni zebhethri ezihlukene, njengokukhuphuka kwezinga lokushisa le-electrolyte, ukunyuka komfutho womoya wangaphakathi, njll. Uma umfutho womoya udlula i-voltage ye-standstand yekepisi yebhethri, ibhethri izovuza. Lesi simo silimaza kakhulu ibhethri. Uma i-valve yokuphepha yehluleka, ingase ibangele nokuqhuma. Ngakho-ke, ungalifinyezi ibhethri ngaphandle.

  • Q.

    What are the main factors affecting battery life?

    A.

    01) Charging: When choosing a charger, it is best to use a charger with correct charging termination devices (such as anti-overcharge time devices, negative voltage difference (-V) cut-off charging, and anti-overheating induction devices) to avoid shortening the battery life due to overcharging. Generally speaking, slow charging can prolong the service life of the battery better than fast charging. 02) Discharge: a. The depth of discharge is the main factor affecting battery life. The higher the depth of release, the shorter the battery life. In other words, as long as the depth of discharge is reduced, it can significantly extend the battery's service life. Therefore, we should avoid over-discharging the battery to a very low voltage. b. When the battery is discharged at a high temperature, it will shorten its service life. c. If the designed electronic equipment cannot completely stop all current, if the equipment is left unused for a long time without taking out the battery, the residual current will sometimes cause the battery to be excessively consumed, causing the storm to over-discharge. d. When using batteries with different capacities, chemical structures, or different charge levels, as well as batteries of various old and new types, the batteries will discharge too much and even cause reverse polarity charging. 03) Storage: If the battery is stored at a high temperature for a long time, it will attenuate its electrode activity and shorten its service life.

  • Q.

    Can the battery be stored in the appliance after it is used up or if it is not used for a long time?

    A.

    Uma ingeke isebenzise into kagesi isikhathi eside, kungcono ukuyikhipha ibhethri uyibeke endaweni enezinga eliphansi lokushisa, eyomile. Uma kungenjalo, ngisho noma into kagesi icishiwe, isistimu isazokwenza ibhethri ibe nokuphumayo okuphansi kwamanje, okuzofinyeza impilo yesevisi yesiphepho.

  • Q.

    What are the better conditions for battery storage? Do I need to charge the battery for long-term storage fully?

    A.

    According to the IEC standard, it should store the battery at a temperature of 20℃±5℃ and humidity of (65±20)%. Generally speaking, the higher the storage temperature of the storm, the lower the remaining rate of capacity, and vice versa, the best place to store the battery when the refrigerator temperature is 0℃-10℃, especially for primary batteries. Even if the secondary battery loses its capacity after storage, it can be recovered as long as it is recharged and discharged several times. In theory, there is always energy loss when the battery is stored. The inherent electrochemical structure of the battery determines that the battery capacity is inevitably lost, mainly due to self-discharge. Usually, the self-discharge size is related to the solubility of the positive electrode material in the electrolyte and its instability (accessible to self-decompose) after being heated. The self-discharge of rechargeable batteries is much higher than that of primary batteries. If you want to store the battery for a long time, it is best to put it in a dry and low-temperature environment and keep the remaining battery power at about 40%. Of course, it is best to take out the battery once a month to ensure the excellent storage condition of the storm, but not to completely drain the battery and damage the battery.

  • Q.

    What is a standard battery?

    A.

    A battery that is internationally prescribed as a standard for measuring potential (potential). It was invented by American electrical engineer E. Weston in 1892, so it is also called Weston battery. The positive electrode of the standard battery is the mercury sulfate electrode, the negative electrode is cadmium amalgam metal (containing 10% or 12.5% cadmium), futhi i-electrolyte iyi-acidic, i-saturated cadmium sulfate isixazululo samanzi, esiyi-saturated cadmium sulfate ne-mercurous sulfate aqueous solution.

  • Q.

    What are the possible reasons for the zero voltage or low voltage of the single battery?

    A.

    01) External short circuit or overcharge or reverse charge of the battery (forced over-discharge); 02) The battery is continuously overcharged by high-rate and high-current, which causes the battery core to expand, and the positive and negative electrodes are directly contacted and short-circuited; 03) The battery is short-circuited or slightly short-circuited. For example, improper placement of the positive and negative poles causes the pole piece to contact the short circuit, positive electrode contact, etc.

  • Q.

    What are the possible reasons for the zero voltage or low voltage of the battery pack?

    A.

    01) Whether a single battery has zero voltage; 02) The plug is short-circuited or disconnected, and the connection to the plug is not good; 03) Desoldering and virtual welding of lead wire and battery; 04) The internal connection of the battery is incorrect, and the connection sheet and the battery are leaked, soldered, and unsoldered, etc.; 05) The electronic components inside the battery are incorrectly connected and damaged.

  • Q.

    What are the control methods to prevent battery overcharging?

    A.

    To prevent the battery from being overcharged, it is necessary to control the charging endpoint. When the battery is complete, there will be some unique information that it can use to judge whether the charging has reached the endpoint. Generally, there are the following six methods to prevent the battery from being overcharged: 01) Peak voltage control: Determine the end of charging by detecting the peak voltage of the battery; 02) dT/DT control: Determine the end of charging by detecting the peak temperature change rate of the battery; 03) △T control: When the battery is fully charged, the difference between the temperature and the ambient temperature will reach the maximum; 04) -△V control: When the battery is fully charged and reaches a peak voltage, the voltage will drop by a particular value; 05) Timing control: control the endpoint of charging by setting a specific charging time, generally set the time required to charge 130% of the nominal capacity to handle;

  • Q.

    What are the possible reasons why the battery or battery pack cannot be charged?

    A.

    01) Zero-voltage battery or zero-voltage battery in the battery pack; 02) The battery pack is disconnected, the internal electronic components and the protection circuit is abnormal; 03) The charging equipment is faulty, and there is no output current; 04) External factors cause the charging efficiency to be too low (such as extremely low or extremely high temperature).

Awukutholanga obukufuna?Xhumana nathi

vala_mhlophe
vala

Bhala umbuzo lapha

phendula kungakapheli amahora angu-6, noma yimiphi imibuzo wamukelekile!

    Dinga usizo?